Capillary action
Capillary action
Capillary action, or capillarity, is the ability of a liquid to flow in narrow spaces without the assistance of, and in opposition to external forces like gravity. The effect can be seen in the drawing up of liquids between the hairs of a paint-brush, in a thin tube, in porous materials such as paper, in some non-porous materials such as liquified carbon fiber, or in a cell. It occurs because of inter-molecular attractive forces between the liquid and solid surrounding surfaces. If the diameter of the tube is sufficiently small, then the combination of surface tension (which is caused by cohesion within the liquid) and adhesive forces between the liquid and container act to lift the liquid.
 
 
Etymology
The word comes from the Latin adjective capillaris ("pertaining to the hair"), from the nouncapillus ("the hair of the head"), ultimately derived from caput ("head"). This would suggest the scientific phenomenon was first observed between contiguous hairs, for example within a paint-brush. In medicine and biology, it usually refers to the smallest blood vessels. The word "capillary," in the non-medical sense, means narrow tube.
Examples
Capillary action is also essential for the drainage of constantly produced tear fluid from the eye. Two canaliculi of tiny diameter are present in the inner corner of the eyelid, also called the lacrimal ducts; their openings can be seen with the naked eye within the lacrymal sacs when the eyelids are everted.
Wicking is to absorb something and then drain like a wick. Paper towels absorb liquid through capillary action, allowing a fluid to be transferred from a surface to the towel. The small pores of a sponge act as small capillaries, causing it to absorb a comparatively large amount of fluid. Some modern sport and exercise fabrics use capillary action to "wick" sweat away from the skin. These are often referred to as wicking fabrics, after the capillary properties of acandle and lamp wicks.
Capillary action is observed in thin layer chromatography, in which a solvent moves vertically up a plate via capillary action. Dissolved solutes travel with the solvent at various speeds depending on their affinity for the solvent (the mobile phase) or the absorbent coating on the plate (the stationary phase).
With some pairs of materials, such as mercury and glass, the intermolecular forces within the liquid exceed those between the solid and the liquid, so a convex meniscus forms and capillary action works in reverse.
In hydrology, capillary action describes the attraction of water molecules to soil particles. Capillary action is responsible for moving groundwater from wet areas of the soil to dry areas. Differences in soil potential ( ) drive capillary action in soil.
) drive capillary action in soil.
 
 
Comments